Title: Dragons, Unicorns and Phoenixes -
Origin and Continuity of Technique and Motif.
Author: M. A. Hann
Foreword: D. Holdcroft

Published by the University Gallery Leeds, in association with ULITA, as an accompaniment to the exhibition: Dragons, Unicorns and Phoenixes - A Selection of Qing Dynasty Silks.

Copyright © 2004 The University of Leeds and the author.
All rights reserved.
ISBN: 1 874331 32 4

Acknowledgements

The author acknowledges the research work of Hong Zhong (a postgraduate student supervised by the author in the late 1980s) and, in particular, his contribution to the detailed cataloguing of the Chinese textiles held in ULITA. The organisation of the exhibition, to which this monograph is an accompaniment, was facilitated by the endeavours of Mr. P. Lawson, Ms. M. Scargall and Mr. J. A. Smith. Thanks are also due to Ms. D. Snow, the University Collections Officer, for her unstinting support, and to Mr. I. S. Moxon for reading early proofs of this monograph. The author accepts all responsibility for errors or omissions.

Price of this monograph: £5.00. All proceeds to ULITA.
Over the past twenty years, traditional Chinese embroidered and woven textiles have gained increased attention in the auction houses of Europe and North America, and have become an important focus among art and craft collectors worldwide. The collection of Chinese textiles held by the University of Leeds International Textiles Archive (ULITA) was assembled several decades before this relatively recent wave of popularity. Professor Aldred Barker, the then recently retired Professor of Textile Industries, travelled to Shanghai in the 1930s to advise on the establishment of an educational institution dedicated to the study of textiles [Barker and Barker, 1934]. Barker was accompanied by his son (K. C. Barker) and, whilst there, the two amassed a quantity of traditionally decorated textiles, from which the present-day collection was built. Fabric labels attached to several of the Leeds Qing pieces are marked with the initials "K.C.B". A further label bears the inscription "Presented by Professor Barker". Another, detached, label indicates that an item was presented by two Chinese students who attended the Department of Textiles at the University of Leeds. Although the precise circumstances of acquisition of the bulk of the collection are, as yet, unknown, the collection is referred to as the "Barker collection of Chinese textiles" owing simply to the known contribution made by Professor Barker and the interest he took in the further development of the museum of textiles at Leeds. Many of the items were manufactured from silk and were produced during the eighteenth or nineteenth centuries. A textile-design research student (Hong Zhong), working under the direction of M. A. Hann, in the late 1980s catalogued the individual items held in the collection [Hong Zhong, 1989] and provided the following broad classification.

- Embroidered items: 80 pieces (33 furnishing fabrics; 33 items of costume; 9 wall hangings; 5 other embroidered pieces).
- Ke-si (or tapestry-woven) items: 39 pieces (4 furnishing fabrics; 16 items of costume; 19 wall hangings).
Other woven silk items (mainly brocades and a small number of velvets): 79 pieces (39 furnishing fabrics; 20 items of costume; 20 other woven items).

Printed items: 1 piece (twentieth-century roller printed).

Most of the items were manufactured during the Qing dynasty (1644—1912), a few during the Ming dynasty (1368—1644) and a small number during the early twentieth century in the years subsequent to the abdication of the last emperor in 1912.

This monograph is published as an accompaniment to an exhibition of items selected from the Barker collection of Chinese textiles, a constituent collection of the University of Leeds International Textiles Archive (ULITA). The following wide-ranging review extends far back in time, traces evidence for textile manufacture in China in ancient times, and charts key developments up to the Qing dynasty. Particular attention is focused on symbolism in Qing dynasty silks, a phenomenon clearly attested in the items presented in the exhibition.

D. Holdcroft
Chairman of the ULITA Committee
<table>
<thead>
<tr>
<th>Period</th>
<th>Approximate Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palaeolithic period</td>
<td>600,000 to 10,000 years ago</td>
</tr>
<tr>
<td>Neolithic period</td>
<td>10,000 to 4,000 years ago</td>
</tr>
<tr>
<td>Xia dynasty</td>
<td>c. 21st century - 16th century BCE</td>
</tr>
<tr>
<td>Shang dynasty</td>
<td>c. 16th century - 11th century BCE</td>
</tr>
<tr>
<td>Western Zhou dynasty</td>
<td>11th century to 771 BCE</td>
</tr>
<tr>
<td>Eastern Zhou dynasty</td>
<td>770-476 BCE</td>
</tr>
<tr>
<td>Qin dynasty</td>
<td>475-221 BCE</td>
</tr>
<tr>
<td>Han dynasty</td>
<td>221-207 BCE</td>
</tr>
<tr>
<td>Western Han</td>
<td>206 BCE-23 CE</td>
</tr>
<tr>
<td>Eastern Han</td>
<td>25-220 CE</td>
</tr>
<tr>
<td>Three Kingdoms</td>
<td>220-280 CE</td>
</tr>
<tr>
<td>Western Jin dynasty</td>
<td>265-315 CE</td>
</tr>
<tr>
<td>Period of Eastern Jin and Sixteen States</td>
<td>317-420 CE</td>
</tr>
<tr>
<td>Northern and Southern dynasties</td>
<td>420-581 CE</td>
</tr>
<tr>
<td>Sui dynasty</td>
<td>581-618 CE</td>
</tr>
<tr>
<td>Tang dynasty</td>
<td>618-907 CE</td>
</tr>
<tr>
<td>Five dynasties and Ten States</td>
<td>907-979 CE (overlap with Northern Song)</td>
</tr>
<tr>
<td>Song dynasty</td>
<td>960-1127 CE</td>
</tr>
<tr>
<td>Northern Song dynasty</td>
<td>1127-1279 CE</td>
</tr>
<tr>
<td>Jin dynasty</td>
<td>1115-1234 CE</td>
</tr>
<tr>
<td>Yuan dynasty</td>
<td>1271-1368 CE</td>
</tr>
<tr>
<td>Ming dynasty</td>
<td>1368-1644 CE</td>
</tr>
<tr>
<td>Qing dynasty</td>
<td>1644-1912 CE</td>
</tr>
<tr>
<td>Republic</td>
<td>1912-1949 CE</td>
</tr>
<tr>
<td>People’s Republic</td>
<td>1949-</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

The principal objectives of this monograph are to trace the origins of the techniques, motifs and patterns used in Qing dynasty textiles. An outline is presented of the evidence relating to textile manufacture in China in ancient times. The development of silk manufacture and trade is described, and the constituent motifs and other elements used in the decoration of Chinese textiles in general, and Qing dynasty silk textiles in particular, are identified and described. Attention is focused on the symbolic role of motifs, and a brief review is presented of the context of production and the patterning techniques used. All Chinese names and terms have been transliterated into the Pin Yin system which transcends orthographical differences in various western languages and has been used as the acceptable phonetic spelling for the past few decades by scholars working in English [Zhong, 1989, p.2]. Sources of information published in Chinese were translated by Hong Zhong. Two academic papers by Zhong and Hann have acted as valuable sources of further information [Zhong and Hann, 1989a and 1989b]. Table 1 presents the chronology of relevant periods and dynasties. Figure 1 shows geographical locations associated with textile manufacture in China, particularly during the Qing dynasty.
2. ORIGINS

Although the quantity of archaeologically authenticated ancient textiles increased dramatically in China during the twentieth century, information relating to these items remained outside the mainstream of textile history until recently. As a result, many textbooks begin their chronology of Chinese textiles with only fleeting reference to textile manufacture prior to the Han dynasty. It is however the case that the foundation of Chinese expertise in the processing of silk, wool and certain bast fibres was laid many years earlier. A review of evidence, resultant from archaeological activity during the latter part of the twentieth century, is presented below.

2.1 INDIRECT EVIDENCE.

Early indirect evidence for the use of yarn (or yarn-type material) in China includes a large quantity of bone needles found at various archaeological sites. For example, a needle, 82 millimetres in length with a needle-eye of one millimetre in width, was found in a Palaeolithic cave in Zhoukoudian, near Beijing, and is reputed to date from as far back as 18,000 BCE [Chen, 1984, p.16]. Large quantities of bone needles have been unearthed at some Neolithic sites, among them Banpo near Xian which yielded 281 needles with the smallest having a diameter of two millimetres and a needle-eye width of 0.5 millimetres [Institute of Archaeology, 1963, pp.81–82]. Further evidence for ancient fibre manipulation comes in the form of spindles. The *fangzhui*, i.e. the primitive spindle, consisted of a spinning rod of bone, wood or bamboo. Such implements have been found in various Neolithic sites such as Cishan (c. 5,300 BCE) in Hebei province, and Hemudu (c. 4,900 BCE) in Zhejiang province [Editorial Board of Textiles, 1984, p.344]. Similar implements were still employed during the twentieth century CE in some of the more remote areas of Shanxi and Yunnan provinces as well as in parts of Tibet [Chen, 1984, p.20]. An excavation in 1978 at Hemudu (Zhejiang province) yielded further evidence of textile processing in the form of hemp threads and parts of a hand loom [Zhejiang Provincial Protection Board of Cultural Relics, 1978, p.39]. These are reputed to date from about 4,900 BCE [Zhejiang Provincial Protection Board of Cultural Relics, 1978, pp.57-60]. Another important find from the same site was an ivory cup.
carved on the outer surface with geometric patterns and what appears to be four caterpillars. The segmentation decorating the caterpillar shapes suggests a representation of the domesticated silkworm [Archaeologists at the Hemudu Site, 1980, p.7]. This appears to be the earliest indirect evidence of sericulture in China.

2.2 SILK MANUFACTURE.
The origins of silk rearing and manufacture are inextricably linked to China. Early success in silk manufacture and trade was facilitated by a range of technological innovations as well as by the monopoly of knowledge of sericulture (i.e. the rearing of silk worms and the reeling of silk fibre in continuous filaments from the silk-worm cocoon). Today, as in ancient times, silk worms are raised from larvae and fed cut-up mulberry leaves for several weeks. When the silk glands are full of liquid, the caterpillars anchor themselves to a fixed spot in advance of spinning their cocoons, a process which takes a few days. The silk strands are naturally held together by sericin, a natural glue extruded at the same time as the fibre. The completed cocoons are placed in boiling water which softens the sericin and loosens the fibre. Five to eight strands of fibre are brought together and reeled. The procedure is, of course, fatal to the caterpillar within.

Silk fragments have been found, together with some ramie cords, at the site of Qianshangyang in Wuxing, Zhejiang province [Wang and Mou, 1980, and Rawson, 1992, p.170]. A carbon-14 dating, equivalent to 2,750 (± 100 years) BCE, based on rice husks excavated with the fragments, has been published [Wang and Mou, 1980]. Among the textile finds are a braided silk cord, a mass of reeled silk and a piece of yellowish brown plain-woven silk with 52 Z-twisted warp threads and 48 Z-twisted weft threads per centimetre [Zhu, 1985, p.2]. The constituent fibres from this and other similar examples are reputed to be from the domesticated silkworm. Two straw brushes, which may have been employed for dislodging filament ends from silk cocoons prior to reeling, were found at the same site [Zhu, 1985, p.3].

It was certainly the case that silk processing had reached an advanced stage of development during the Shang dynasty when woven silk fabrics of many types were regarded as valuable commodities in China. The Shang
people inhabited the basin of the Yellow River, the area considered to be the cradle of Chinese civilisation [Bellingham, Whittaker, and Grant, 1992, p.122]. The Shang dynasty witnessed the manufacture of bronze and the development of a highly organised society [Rawson, 1992, p.294]. Archaeological evidence for Shang dynasty silk processing appears on the surface of a number of excavated bronzes and jade items, either in the form of pseudomorphs or as actual remains of textiles impressed or adhering to surface encrustations. These remains have undergone technical examination by textile specialists from China and elsewhere [Liu and Luo, 1986, pp.12-16].

Inscriptions on bone and bronze provide further evidence for silk manufacture and trade. Such evidence is in abundance from both the Shang and Western Zhou dynasties and provides a wide-ranging reference to numerous textile techniques and products. The excavation of a Western Zhou tomb during 1970 at Weiyigzi in Liaoning province yielded over twenty silk fragments including a twill-woven brocade of 52 warp threads and 14 weft threads per centimetre, which indicates a remarkable achievement in the pattern weaving of the period [Liaoning Provincial Museum, 1977, p.36].

2.3 BAST FIBRE MANUFACTURE.
The earliest textiles made from bast fibres predate those of silk with the earliest-preserved find comprising three pieces of ge (kudzu vine) fabric [Nanjing Museum, 1980, p.4]. These rib-woven fabrics, with lozenge-type patterns, were found in carbonised form at Chaoxieshan, Jiangsu province, in 1972, and were dated to 3,400 (± 100 years) BCE [Nanjing Museum, 1980, p.4]. It seems that ge, ramie, and hemp were the staple raw materials most commonly used by the majority of the population during the most remote periods of Chinese history. Ge vine grew in the hilly areas of China and was popular as a source of fibre from Neolithic times to the Zhou dynasty, reaching its peak of importance in the Warring States period, when a number of literary references were made to its cultivation and to the manufacture of fine ge textiles [Shanghai Institute of Textile Science, 1978, p.9]. Subsequently to the Warring States period, ge textile manufacture began to decline and was soon replaced by ramie until the Song Dynasty, when consumption of
cotton rose in relative importance [Shanghai Institute of Textile Science, 1978, p.9].

2.4 WOOL MANUFACTURE.
It seems that, when sericulture was still in its infancy in the main urban areas of China, wool was being consumed as a staple raw material in the remote north-western parts of the country, especially among nomadic tribal peoples [Chen, 1984, pp.44-45]. As early as 3,000 BCE, as evidenced by recent archaeological excavations, the inhabitants of Banpo village, Xian, had domesticated sheep [Institute of Archaeology, 1963, p. 259]. The earliest surviving wool textiles, however, are from a later period. Dating to 1,880 BCE, these textiles were excavated in 1980 at the site of Luobuzuoer in Xinjing province. They are plain woven from S-twisted warp threads and Z-twisted weft threads, and show selvedges (denoting a relatively advanced loom technology) [Editorial Board for Textiles, 1984, p. 361]. Another excavation in 1979 at Hami, also in Xinjiang, yielded some finer wool textiles, dated to c. 1,200 BCE [Editorial Board for Textiles, 1984, p.361]. These textiles, which remained well preserved owing to favourably dry climatic conditions in the desert site of Hami, include a polychrome check-patterned bantan (an ancient Chinese term for fine, closely woven wool fabric) composed of red, light-blue, beige, and black yarns [Huang, 1985, plate 3 and p.2]. It is worth noting that other wool textiles from the Shang and Zhou dynasties also show a remarkable variety of colours indicating the early development of wool dyeing and finishing techniques [Chen, 1984, p.85].

2.5 COLOURS AND PATTERNS.
Both archaeological finds and literary records show that various mineral and vegetable dyes were used for textile colouring in China from very early times. Amongst the mineral colorants in use were hematite and cinnabar for red, and malachite for green [Chen, 1984, pp.78-79]. Plant dyes used during early times include madder for red, Chinese gromwell for purple, and hispid arthraxon for yellow [Chen, 1984, pp. 78-79]. The earliest and most commonly used plant dye was indigo [Li, 1983, pp. 20-21]. Indigo plants were cultivated as early as the Xia dynasty and, from then on, indigo-dyed textiles were in widespread use [Chen, 1984, pp.78-79]. According to ancient literary sources, silk dyeing during the Western Zhou
Dynasty was a seasonal process [Chen, 1984, pp. 82-83]. Preparatory processes such as scouring were conducted during the spring, and dyeing during the summer and autumn [Chen, 1984, pp. 82-83]. This was probably due to the seasonal nature of harvesting relevant plants. The problems of purifying and storing vegetable dyestuffs were solved in the Han dynasty and seasonal regulation was rarely mentioned thereafter [Chen, 1984, pp. 82-83].

The bulk of textile finds from Neolithic times until the Xia dynasty appear to be plain woven. A few, however, have woven geometric patterns such as rhombs and zigzags, both bearing a striking similarity to the stamped pottery patterns from the same period [Su Bingqi, 1984, pp. 199-201]. Although still restricted, in the main, to small-scale geometric patterns, the woven fabrics from the Shang and Western Zhou dynasties are rich in variety of motifs. Twill weave was used extensively, either in the form of twill patterns against a plain ground or in the form of fancy twills. Hui (revolving) motifs, cloud motifs, and thunder motifs were in widespread use and echo the decorative style of bronzes, jade items and ceramics of the time. Patterns composed from such motifs can also be seen on the garments depicted on some carved stone figures from the same period. The pattern limitations exhibited by woven textiles were due to the technological restrictions imposed by the weaving techniques employed. In the case of embroidery, however, restrictions were less severe. Evidence of embroidery comes in the form of impressions on clay items (from a Western Zhou tomb in Yuja village, Shanxi province). These show a bewildering variety of curvilinear motifs [Chang, 1973, pp. 168-188].
3. ANCIENT PRODUCTION

In ancient times the location of specialised textile-producing centres was dependent on the availability of local materials and general geographic conditions [Liu and Luo, 1986, pp. 19-21]. By the time of the Warring States period, the development of road and canal systems aided the expansion of textile production and trade. Textile manufacture became the foundation of the state economy and an important source of state revenue. Historical records of the Warring States period show that the term sang ma meaning “silk and hemp” was frequently used to refer to either the local economy or the state’s wealth [Li, 1983, pp. 24-25]. State-controlled organisations, established to monitor the production of textiles, had already been set up during the Western Zhou dynasty [Chen, 1984, p. 38]. Government control such as this was strengthened further during the Warring States period.

3.1 INDUSTRIAL ORGANISATION.

Production became dependent on complex divisions of labour and each manufacturing stage was supervised by a specially assigned official [Chen, 1984, p. 38]. The book of Zhou Li, written during the period, made reference to eight governmental departments controlling the processing of certain raw materials and the manufacture of certain products [Chen, 1984, p. 38]. These were as follows:

- Zhangpi, for collecting leather and wool.
- Dianfugong, for the female labour force involved in textile manufacture.
- Diansi, for collecting, testing, storing and distributing silk.
- Diantai, for collecting hemp fibres.
- Ranren, for dyeing silk yarns and fabrics.
- Zhangge, for collecting ge fibres.
- Yuhren, for collecting feathers and plumes for special textile purposes.
- Zhangranchao, for collecting raw materials for producing dyestuffs.

3.2 EMBROIDERY.

A Chinese embroidered-silk textile dating to the 5th century BCE was found by a Soviet team of archaeologists in the Scythian kurgans (i.e.
burial mounds) in the Pazyryk Valley, in Outer Mongolia, in 1949. Subsequently, there have been a number of excavated finds, within China itself, of embroidered-silk textiles dating from the Warring States period [Li, 1976, pp.60-63]. These embroidered silks, which are contemporary with the Pazyryk finds, were unearthed from various tombs in or around Changsha, the ancient city of the state of Chu, in Southern China [Li, 1984, pp.296-303]. It is noteworthy that the design of the Pazyryk embroidered silk is very similar in style and constituent motifs to the two embroidered silks found in Tomb 3 at Lieshigonyuan, Changsha [Gao, 1959, p.70]. All three fabrics were embroidered with elegantly curved floral twigs, birds and dragons, which suggests that Chu embroidered textiles were widely traded at the time (considering the vast geographical distance separating the two finds).

The state of Chu has been the focus of extensive archaeological attention for some time, and textile finds from the area now form a respectable body of data. This was enhanced in 1982 by a particularly large find comprising the well-preserved contents of a Warring-States-period tomb of a civil official. The textile finds included a wide variety of embroidered silks, among them some fully embroidered garments, robes, quilts and some further articles with embroidered borders. The patterns on these embroidered textiles, in the main, were created by using chain stitch, though satin stitch was also used in some cases [Peng, 1982, p. 5]. Most of the ground fabrics were plain woven, but in a few cases leno constructions were evident. Very careful examination of the fabrics indicates that, prior to embroidery, outlines of motifs were applied to the ground fabric by using either Chinese ink or cinnabar (red colouring).

Stylised dragons, phoenixes, blossoming twigs, and geometric motifs, all of which played an important role in Chinese design iconography for the two-and-a-half subsequent millennia, dominated the patterning on these Warring States silks. In addition, other motifs, such as the tiger, the owl and three-headed birds, were used [Chen and Zhang, 1982, p. 10]. Compared with the small-scale simplistic motifs appearing on Shang dynasty and Western-Zhou-dynasty textiles, Warring States textiles show a bewildering variety of bird and plant motifs. In general, patterns are highly stylised in tenuous flowing lines and in subtle colour tones. Motifs are invariably arranged in vertical, horizontal, or diagonal
positions, and form squares or lozenge-shaped outlines, a distinguishing feature of the patterning on the embroidered silks of the period [Huang, 1985, pp.7-8]. Another feature is that different animals, or even birds and plants, often share the same body. For example, an arabesque-style blossoming twig and a long thin dragon’s body appear to merge into one form (similar to decoration on Celtic manuscripts, produced on a different continent a millennium later). Figures 2, 3 and 4 show reproductions from embroidered textiles found in Chu Tomb 1, Masan, Jianling [Zhong and Hann, 1989b].

3.3 WOVEN TEXTILES.

It seems to be the case that technological innovation during the Warring States period provided the impetus for the development of various silk weaves, especially in the state of Chu. In the light of textile finds made in the last three decades of the twentieth century (CE), it is worth remarking that a number of inaccuracies have appeared in past western scholarly literature. For example, it is generally accepted that weft-patterned silks were not produced in China until the Tang dynasty, when, so it is claimed, appropriate weaving technology was introduced from countries to the west [Jenyns, 1981, pp.16–18]. However these archaeological discoveries of the late twentieth century demonstrate that weft-patterned silks were being produced more than a millennium before the beginning of the Tang dynasty, since both weft- and warp-patterned silks were unearthed from various Warring States tombs. It should also be noted that silk gauzes were found in Chu tombs; these are commonly believed to be product innovations of the Han dynasty [Wilson, 1979, p.185]. Leno silk fabrics have also been found in Chu tombs. Owing to the net-type construction of these fabrics, they have very good ventilation properties, which thus make them suited as clothing in the hot, humid summer climate of the Chu region [Editorial Board for Textiles, 1984, p.164].

Warp-patterned silk brocades, known as jin, were the most common patterned fabrics in the Chu textile finds, and they indicate the wide application of technically advanced draw looms. A total of 23 pieces of brocade, together with a quantity of plain-woven silks, was unearthed from Tomb 44 at Zhojatang, Changsha [Xong, 1975, p.49]. These brocades were patterned through the use of warp threads of three different
colours. Construction densities ranged from 80 ends per centimetre by 44 picks per centimetre to 138 ends per centimetre by 40 picks per centimetre. Motifs included double dragons, usually arranged face to face, double phoenixes, flowers, birds, tortoiseshell motifs, check patterns and various geometric shapes, such as lozenges. It is noteworthy that the decorative style of these fabrics is identical to that exhibited on lacquer ware and bronze mirrors unearthed in the same geographical vicinity, which lends support to the belief that the brocades were produced in the locality [Li, 1984, pp. 298-299].

An interesting discovery from Tomb 44 at Zhojatang is a small piece of plain-woven silk sewn on the selvedge of one of the brocades. This piece of fabric was marked with the weaver’s signature in ink, together with a red seal [Xong, 1975, p.52]. This would appear to be the earliest identification mark of this type to appear on a Chinese textile. The use of such signatures or seals, showing the name of the crafts person, the tailor, or the owner, became increasingly widespread during subsequent dynasties [Zhong and Hann, 1989b].

Some of the best-preserved silk brocades, including both warp- and weft-patterned types, came from the Chu tomb (number 1) at Jianling. Most warp-patterned categories used two or three colours in the warp, except in one case where a total of six colours were used [Chen and Zhang, 1982, p.10]. The two-coloured varieties show the same pattern on both sides of the fabric but with reverse colouring. In some cases additional colour effects were obtained by the use of an additional weft colouring [Editorial Board for Textiles, 1984, p.128].

It seems that innovations in draw-loom weaving during the Warring States period provided the potential for producing larger and more sophisticated patterns on the warp brocade of the period. One example [cited in Zhong and Hann, 1989b] is a lined quilt, measuring 333 centimetres by 233 centimetres, and composed of five pieces of fabric. On each piece, a complex pattern depicting dancers and various animals is arranged across each fabric. One complete design repeat measures 5.5 centimetres by 49.1 centimetres, and uses around 286 weft threads and about 7,600 warp threads [Peng, 1982, p.5]. Owing to the high labour intensity and skill levels required in brocade weaving, it is not surprising that such fabrics were apparently used only rarely for whole garments.
but rather were used more sparingly in end-uses such as decorative borders on costumes [Shen, 1981, p.27].

The weft-patterned silk brocades found in the Chu tomb in Jianling were produced by one of two fundamentally distinct techniques. With one technique, extra patterning weft threads were carried the full width of the fabric, from selvedge to selvedge. The other technique relied on discontinuous brocading, sometimes referred to as “space weaving”, in which the patterning wefts were inserted by small shuttles within small areas across the shed [see Zhong and Hann, 1989b]. With this latter technique, the extra patterning wefts were of higher linear density than the basic warps and wefts so that the finished fabric showed a slightly raised effect [Editorial Board for Textiles, 1984, p.128]. This technique may well have been the precursor of the ke-si (silk tapestry) technique apparently developed in the Tang dynasty, around 1,000 years later [Zhong and Hann, 1989b, and Chen, 1984, pp.291-292].

Motifs on both weft- and warp-patterned brocades were similar, and ranged from simple geometric motifs to more complicated figurative scenes (such as a hunting scene) [Huang, 1985, pp.7-8].

Figure 2: An embroidered pattern on a silk leno fabric from Chu Tomb 1, Masan, Jianling
3.4 KNITTED TEXTILES.

Several pieces of hand-knitted fabric were found in the Jianling Chu tomb [Editorial Board for Textiles, 1984, p.129]. These appear to be the oldest known knitted examples found to date in China. They are knitted with double-plied yarns, using a weft-knitting technique, and depict animal, checked, and lozenge patterns. They have been reported to retain good stretch properties despite the passage of over two thousand years [Editorial Board for Textiles, 1984, p.129].

3.5 PRINTED TEXTILES.

On the basis of the highly developed nature of a number of printed fabrics found in the Mawangdui Han dynasty tomb in Changsha, archaeologists had surmised that the origin and early stages of the development of textile
printing in China may have dated to some time before the Han dynasty [Munan Museum, 1979, p. 354]. However, as reported by Zhong and Hann [1989b], no direct evidence to support this claim was forthcoming until 1979, when several fragments of printed fabrics were found in a group of cave burials at Gueixi, in Jianxi province [Chen and Liu, 1980, p.15]. These burials were typical of the Ganyue clan in the state of Yue. A carbon-14 dating equivalent to 2,595 years (± 75 years) ago has been published [Chen and Liu, 1980, p.15]. The printed textiles from the excavated site were monochrome-printed hemp fabrics, which were dark brown, with the patterns printed in a silver-coloured pigment made from a silicone compound [Chen, 1984, p.87]. Unfortunately none of these printed pieces is large enough to enable the determination of the nature of the decoration or the motifs used. However two wooden squeegees were also found in the proximity of the fabrics, which indicate the possibility of a stencil-type printing technique as opposed to a block-printing technique. These squeegees, which measure about 25 centimetres in length and around 20 centimetres in width, are thin and wedged shaped in cross-section, with a short handle at the top of each [Zhong and Hann, 1989b]. It appears that this discovery provides the earliest dated evidence of stencil printing, not only in China but, it seems, worldwide.
4. THE SILK ROUTE — ITS DEVELOPMENT & DECLINE

The fibre-manipulation skills which developed from the Shang dynasty onwards acted as the foundation for the further evolution of textile manufacturing techniques displayed during the Warring States period. By this latter period textile manufacture was highly organised by governmental authorities, with quality standards rigorously defined. A wide range of patterning techniques was used to impart complex repeating compositions, apparently more sophisticated than had been achieved at the same time elsewhere. Not only were embroidery and warp brocades produced, but weft brocading, knitting and, most surprisingly, stencil printing were in use. These relatively high levels of technological capability gave the impetus for the sophisticated achievements of the Han dynasty. By that time, a socially and economically sophisticated society had emerged, and trade in manufactured silks with nations to the west had evolved, reaching the eastern Mediterranean and imperial Rome via the long arduous channel known as the “Silk Road” or “Silk Route”.

The terms “Silk Road” and “Silk Route” are misleading. First, no single road or route was taken and, second, the routes did not develop solely for the purpose of trade in silk. It was during the Han dynasty that trade missions travelled westwards from China, initially in search of a larger breed of horse that could be used by the Han cavalry. After a few failed attempts, some of the so-called “heavenly horses” were obtained. Many other objects of interest were brought back to the Han court including Gandaran Buddhist sculpture, itself strongly influenced by Hellenistic culture (initiated by the conquests of Alexander the Macedonian, a few centuries before). Trade with countries to the west thus developed. Meanwhile small quantities of Chinese silk had reached the eastern Mediterranean and imperial Rome, traded by the Parthians who held dominance on the Iranian Plateau. Many other commodities were traded as well. Caravans going east to China carried precious metals, gemstones, ivory and glass (seemingly not manufactured in China until around the 5th century CE). Caravans travelling westwards were loaded with ceramics, jade, lacquer work and furs. Exchange of goods probably occurred several times as there are no known records of European
traders in Changan (the easternmost part of the Silk Route) or of Chinese traders in Europe. The terms "Silk Road" and "Silk Route" do not date back to Roman times, but seem to be terms coined during the nineteenth century.

The development of trade brought with it the problem of bandits who, taking advantage of the difficult terrain, plundered the caravans. Defensive walls and forts were built on the western parts of China’s frontier. The Silk Route did not just function as a conduit for trade; it was also an effective channel for cultural diffusion. Buddhism, for example, came to China from northern India.

Although the Han dynasty saw the initiation of substantial trade along the Silk Route, it was in the Tang dynasty that the peak of importance was reached. In fact it was during this dynasty that Changan developed into a large and cosmopolitan city. After the Tang dynasty the trade along the Silk Route decreased owing largely to the activities of neighbouring tribes of bandits who plundered the caravans. It was during the Yuan dynasty, the time of the Mongol empire, during the 13th century CE, that trade increased, but this was short-lived and by the time of the Ming dynasty the barriers on trade with countries to the west were drawn again.

During the nineteenth century, western scholars developed interests in the Silk Route. In the wake of the expeditions of Sven Hedin (Sweden), Sir Aurel Stein (Britain), and Albert von Le Coq (Germany), there followed a period of frenzied digging to unearth quantities of textiles and other items previously traded along the route. Treasures from the ancient Silk Route are now scattered in museums around the world.
5. SILK MANUFACTURE DURING THE QING DYNASTY

The Qing dynasty covers the period between the military successes of the Manchus (who owed their origins to nomadic peoples) and the abdication of the last Qing emperor in early 1912. In the early years of the dynasty much was done to encourage textile production, including favourable changes in systems of taxation [Li, 1983, p.224]. As a result, silk production increased significantly and cotton cultivation and production became more widespread with new manufacturing units being established in Central and Eastern China [Li, 1983, p.224-236]. Old methods for disseminating knowledge to rural areas were re-employed, including the distribution of re-drawn illustrations from the Southern Song dynasty depicting cultivation methods and processing techniques. Such pictorial communications were, according to a number of local governors, an effective means of promoting knowledge of silk cultivation and manufacture [Liu and Luo, 1986, p.140]. Expansion in demand from both domestic and foreign markets, from the early to the mid-Qing period, stimulated further the development of textile manufacture [Yang, 1978, pp.309-310]. By the late Qing dynasty, a gradual decline in silk processing took place, with cotton being substituted for silk in many end-uses in the home market. Also, raw-silk progressively replaced finished-silk products in many foreign markets, as mechanised weaving developed further in Europe and elsewhere from the late eighteenth to the early twentieth centuries [Chen, 1961, pp.130–132]. For much of the Qing dynasty, textiles were produced in one of three manufacturing contexts: domestic manufacture, independent factory manufacture, and state-sponsored manufacture [Zhong, 1989, p.7]. Each is explained briefly below.

5.1 DOMESTIC MANUFACTURE.

In terms of quantity of output, the domestic sector remained the largest textile producer for much of the Qing dynasty. Women and children across vast rural areas engaged in textile manufacture while men worked in the fields [Ling, 1982, p. 17-22]. Processing equipment was rudimentary and the bulk of fabrics were woven using a plain-weave structure. Embroidery on these plain-woven fabrics was common. The bulk of such

1 The end of the Qing Dynasty is formally marked by the abdication of the infant emperor, Payi, on 12 February, 1912 [Rawson, 1992, p.307].
production was for home consumption, but surpluses were brought to market [Wang, 1982, p.52].

Seemingly, a well-organised family unit could produce over a hundred bolts (about 1,200 metres) of silk fabric in a year [Tong, 1981, pp.295-296]. In the case of cotton textiles, the family manufacturing unit was the major source of manufacture. Since cotton was not considered a luxury material for use by the imperial court and the upper echelons of society, the Qing authorities did not establish organisations to monitor production. Instead, government agents purchased enough cotton textiles on local markets to meet the needs of consumers outside rural areas [Tong, 1981, p.346].

5.2 INDEPENDENT FACTORY MANUFACTURE.
During the early Qing dynasty the imperial government put certain restrictions on independent manufacturers. For example it was stated that

...an independent manufacturer is not allowed to have more than 100 looms; each loom should be taxed [at] 50 jing and the manufacturer must apply to the zhi zhao [weaving production] official for a licence before production begins [Tong, 1981, p. 298].

However, it seems that restrictions such as this were abandoned during the Kangxi reign (1662-1722), and manufacturing units, especially those located in eastern coastal areas, were allowed to develop [Zhu, 1988, p.911]. By the early 1800s there were many silk factories in Jiangling (Nanjing) operating more than 500 looms [Wang, 1982, p.56]. At the same time, large factories with well over 1,000 looms emerged in Suzhou and Hangzhou [Nong, 1985, p. 291].

5.3 STATE-SPONSORED MANUFACTURE.
Under the Qing administration four major bureaux were established to regulate the manufacture of high-quality silk products [Pen, 1984, pp.70 -84]. These bureaux included the Lei Zhi Ran Ju (The Inner Weaving and Dyeing Bureau) located in Beijing and the three Zhi Zhao Ju (Weaving Production Bureaux) located in Jiangling (Nanjing), Suzhou and Hangzhou [Zhu, 1985, pp. 100-103]. The bureaux in Beijing and Jiangling were responsible for manufactured textiles for use in the imperial court and governmental circles, while those located in Suzhou and Hangzhou were responsible for textiles used for other official purposes such as gifts and awards [Shen, 1981, pp. 467-474]. Administrators in charge of the three
weaving bureaux were directly appointed by the imperial government and were thus independent of the local authorities [Shi, 1969, p. 12]. Although quantities of output were small compared to the total output of independent manufacturers or domestic manufacturers, the quality attained was exceedingly high.

5.4 END-USES.

In addition to its obvious utilitarian function, dress played an important role as an indicator of rank and social status. Rules governing dress supported a detailed hierarchical structure. Imperial power exercised a system of rewards and favours by which officials rose within this hierarchical structure [Portal, 1992, p.194], with each position in the ranking indicated by details or colour of dress as well as the use of various accessories. Portal observed:

When officials gathered together at court audiences, rituals and sacrifices, their positions were laid down in minute detail and could be gauged by their apparel...At the top of the hierarchy, of course, were the emperor and the imperial family [Portal, 1992, p.194].

For much of the Qing dynasty, civilian and military officials were required to wear cloth rank badges attached to the upper front and back of their garments. This practice had its origins in the Ming dynasty. Round badges, decorated with dragon motifs, were the choice of imperial nobility. Meanwhile, civilian officials were required to wear square badges, decorated with bird motifs, and military officials to wear badges decorated with animal motifs. The ranking for each was as follows:

- First rank: white crane for civilian officials and a unicorn for military officials.
- Second rank: golden pheasant for civilian officials and lion for military officials.
- Third rank: peacock for civilian officials and leopard for military officials.
- Fourth rank: wild goose for civilian officials and tiger for military officials.
- Fifth rank: silver pheasant for civilian officials and black bear for military officials.
- Sixth rank: egret for civilian officials and panther for military officials.
- Seventh rank: mandarin duck for civilian officials and panther for military officials.
Eighth rank: quail for civilian officials and rhinoceros for military officials.

Ninth rank: paradise flycatcher for civilian officials and sea horse for military officials.

During the Qing dynasty fundamental changes occurred in the dominant costume styles. Regulations were complex and the costumes of different social classes showed a bewildering diversity. The *quipao*, or long robe, which was either collarless or with a small curving collar and a large front panel and long sleeves, was the typical garment worn by Manchu men and women [Zhong, 1989, p.34]. Small stylistic changes to the robe occurred throughout the Qing dynasty. The use of Han-style costumes was prohibited (except for theatrical/operatic use) [Wan, 1985, p.172].

An important characteristic of Qing dynasty costumes was the rich ribbon decoration on borders, an addition which dated back at least 2,000 years [Zhong, 1989, p. 36]. The trend reached a peak in the Xianfong (1851-1861) and Tongzhi (1862-1874) reigns, when the number and quality of borders was a sure indication of the value of the total garment [Shanghai Traditional Opera School, 1984, p.264]. A bright yellow robe was reserved for use by the emperor, but occasionally a blue robe was used. The twelve symbols of authority, also known as the "twelve imperial symbols", were depicted on the garment. These are reputed to date back to the Western Zhou dynasty. They include the following symbols: the sun, the moon, a constellation of three stars, a mountain motif, a pair of dragons, a pheasant, a pair of bronze cups, water weed, grain (maybe millet), a flame, an axe and a symmetrical geometric symbol known as the *fu* symbol.
6. TECHNIQUES OF MANUFACTURE DURING THE QING DYNASTY

The principal patterning techniques employed during the Qing dynasty included embroidery, tapestry weaving, brocade weaving and velvet weaving. A brief description of the technique or the resultant product from each is given below.

6.1 EMBROIDERY.

During the Qing dynasty various styles of embroidery developed in different regions. Among the more important embroidery styles were Su embroidery (from Suzhou), Yue embroidery (from Guangdong), Xiang embroidery (from Hunan) and Shu embroidery (from Shangdong). Commentary on each is provided below.

Su embroidery, produced in the Suzhou area, became favoured by the Qing imperial court. Special government-controlled departments were set in different locations to monitor production, especially during the Qiannong reign (1736–1795 CE) [Duan and Zhang, 1986, p.81]. Suzhou became known as the "city of embroidery" and Su embroidery was divided into two categories: one for use by the imperial court and the other for the general public [Duan and Zhang, 1986, p.278]. Documentation from the tenth year of the Guangxu reign (1884 CE) indicates that there were 65 embroidery companies operating in Suzhou [Duan and Zhang, 1986, p. 279]. In 1917, five years after the last year of the Qing dynasty, there were over 16,300 professional embroiderers engaged in Su embroidery [Zhu, 1956, pp. 134–136]. Su embroidery was well known for its elegant patterning, soft colour tones, subtle colour gradations and meticulous stitching [Tian, 1985, p. 317]. Patterns were divided into constituent elements by fine lines created by the ground fabric, and this voiding, known as *sui lu* (or "water path"), made the pattern edges clearly defined [Zhong, 1989, p. 11].

Yue embroidery, produced by men in the Guandong area, was exported in large quantities (particularly to Europe) during the late Qing dynasty. Satin stitching and couching were the principal stitches, used in
association with silk threads in strong colours and gold metallic yarns [Zhong, 1989, p. 11].

Xiang embroidery, produced in Hunan, especially in the city of Changsha, was best known for its effectiveness in imitating Chinese water-colour painting. Slightly twisted silk threads in an extensive array of colours were used to recreate the subtle, diffused shading effects similar to those attainable by water-colour [Zhong, 1989, p. 11].

Shu embroidery was produced in the Sichuan area, especially in the city of Chendu. Interlink stitch was the most common stitching technique. Rich colour combinations were used to produce clear relief effects. Product end-uses included costumes, quilt covers, pillow cases, curtains, hats and shoes [Zhong, 1989, p. 11].

A wide variety of embroidery techniques was employed. The principal stitches (zhen) are described below.

- **Pin xiu** (or flat embroidery) includes **pin zhen**, **tao zhen** and **can zhen**. **Pin zhen** (flat stitch or satin stitch) is one of the most common stitches in Chinese embroidery. It results in a smooth and even texture. **Tao zhen** (interlink stitch) is similar to brick stitch and is of ancient origin with the earliest example found in a Han dynasty tomb [Shanghai Institute of Textile Science, 1980, p. 55]. This technique was extensively used during the Qing dynasty and facilitated subtle colour gradation. **Can zhen** (mixing stitch), also known as "long and short stitch", "flesh stitch", or "shading stitch" is used to produce a dense smooth surface occasionally with numerous shades of colour. Whilst stitches need not be uniform in length, they are usually orientated in the same general direction [Hann, Thomson and Zhong, 1990, p. 3].

- **Xian wen zhen xiu** (line-stitch embroidery) is the term given to a group of stitches for various pattern outlines and includes **guen zhen**, **ji zhen**, **piao zhen**, and **hang zhen**. **Guen zhen** (rolling stitch) is known as "stem stitch" in the West and is generally employed to give clear outlines. **Ji zhen** (also known as "back stitch") is worked in such a way that each stitch has a degree of overlap with the previous stitch. It was often used in Qing embroidery on occasions where fine lines were required (e.g. human hair, fish fins, floating mist, clouds). **Piao zhen**, which
is a combination of stem and back stitch, is worked with two threads. *Hang zhen*, known as "running stitch", is the simplest of all stitches and is formed by the needle passing in and out of the fabric at equal intervals [Hann, Thomson and Zhong, 1990, p. 3].

- **Din xian xiu** (holding-thread embroidery) is known as "couching" in the West, and uses a heavy-duty thread, generally of a metallic nature, which is laid on the surface of the base fabric and is subsequently held in position by a fine silk thread which passes through the back of the base fabric. Couching may be used as an outline or as a filling stitch [Hann, Thomson and Zhong, 1990, pp. 3-4].

- **Sho xiu** (lock embroidery), also known as "chain stitch", is probably the oldest decorative stitch used in Chinese embroidery. Fragments from the Western Zhou dynasty have been reported [Li, 1976, pp.60 -63]. The technique was also widely employed during the Qing dynasty, generally as a space-filling stitch but occasionally as a line stitch [Hann, Thomson and Zhong, 1990, p. 4].

- **Da zhi**, also known as "seed stitch" or "French knot", was often used singly to depict flower stamens, or tightly grouped to give a solid textured effect. Again, this stitch was in frequent use throughout the Qing dynasty, particularly during the 1790s [Wang, 1985, pp. 4-8, and Hann, Thomson and Zhong, 1990, p. 4].

- **Nasha** (stitches over gauze) is a type of counted thread work on an open weave fabric (usually a silk gauze). Similar stitches in European embroidery include tent stitch, Florentine stitch and Hungarian stitch [Zhong, 1989, p. 15]. The technique was in widespread use during the Song dynasty [Zhong, 1989, p. 20].

- **Wang xiu** (net embroidery) is a type of pattern stitch which can be used directly on an open weave fabric or used over other stitches on a close-woven ground fabric [Zhong, 1989, p. 20].

- **Luan zhen xiu** (free-stitch embroidery or needle painting) is a technique used to imitate painting. Such techniques were used in Xiang embroidery in Hunan province during the Qing dynasty, to imitate the subtle shading of water-colours and free-brush work [Zhong, 1989, p. 20].
Other techniques used during the Qing dynasty include beadwork, appliqué, *baogen xiu* (overcast stitch, which was usually employed for outlines), and *wan xiu* (coiling stitch, in which two sets of needles and threads were used together).

6.2 TAPESTRY WEAVING.

Tapestry-woven textiles (also known as *ke-si*) were produced using a technique which seemingly originated during the Tang dynasty [Zhong, 1989, p.30], and underwent refinement during the Northern Song dynasty. By the Southern Song, when the principal centre of production moved from the north to the south-east around Suzhou and Hangzhou, a very wide range of design motifs and subtle colour gradation was in evidence. During the Qing dynasty, *ke-si* products were manufactured mainly for the imperial court and other upper-class uses.

Ke-si is a tapestry-type fabric, and like western tapestry relies on a plain-woven structure but, in the absence of interlinking of adjacent wefts at the interface between two colours, lengthways vents or slits are produced; hence the term *ke-si* or "cut silk". In the production of *ke-si*, an original painted design or cartoon, was placed under the warp sheet. The weaver would then use a paint brush to trace the pattern outlines on the warps, defining separate colour areas for the insertion of weft. Generally fine undyed warps and coarser dyed wefts were used. Distortions to warp threads were avoided but wefts were allowed to

![Figure 6: Detail from a dragon robe, 19th century](image-url)
curve. The production of *ke-si* was very time-consuming and it may have taken an experienced weaver over a year to complete sufficient fabric for a garment or large wall-hanging [Gai, 1978, pp. 236-239]. In the reproduction of a painting, an extensive colour palette was often employed and may have extended to as many as 6,000 colours [Editorial Board for Textiles, 1984, p.158]. Towards the end of the Qing dynasty, attempts were made to increase output and this led to a general decline in aesthetic standards, owing to the tendency to hand-paint finer details rather than weave them [Zhong, 1989, p. 25].

6.3 BROCADES.

Categories of silk brocade manufactured during the Qing dynasty are: Song brocade, Zhuang brocade, Shu brocade and Yu brocade. A brief description of each is provided below.

As the name implies, Song brocade had its origins in the Song dynasty, but was used extensively during the Qing dynasty, when the principal producing areas were Suzhou, Huzhou and Hangzhou [Yang, 1987, pp.165-168]. This was a complex compound structure, with two sets of warp threads and three sets of wefts. A rich variety of designs and colour combinations was evident. Subtle colour gradations were common, and sharp contrast of primary or complementary colours was generally avoided. A typical feature was the use of small hexagonal patterns with the addition of floral and animal motifs as well as various auspicious symbols. A typical end-use was as apparel fabrics.

Figure 7: Details taken from a dragon robe fabric, 19th century
Zhuang brocade is a heavy-weight polychrome fabric which was produced by the Zhuang people of Guangxi province [Yang, 1987, pp.77-79]. Unlike other silk brocades produced in the major industrial areas during the Qing dynasty, Zhuang brocade was produced by means of hand looms constructed from bamboo [Chen, 1984, pp. 227-228]. The fabric was generally woven to narrow widths (about 35 - 40 centimetres) from monochrome cotton, or sometimes ramie ground warp and weft threads, and thick, lightly twisted polychrome silk patterning weft [Chen, 1984, pp.371-372]. Generally bold geometric motifs were arranged in repeating lozenge shapes. End-uses included heavy-weight blankets and clothing.

Shu brocade, a polychrome silk brocade, was manufactured in the Sichuan (also known as “Shu”) area, around Chendu [Ji, 1984, pp.107-108]. Originating during the Han dynasty, Shu brocade was probably the most ancient type among the silk brocades manufactured during the Qing dynasty. Although much damage (resultant from military conflict) was caused to the silk industry in Sichuan during the late Ming dynasty, the production of Shu brocade soon recovered during the Qing dynasty and influenced the design of silks produced in the eastern coastal areas [Zhong, 1989, p. 31]. The principal feature of Shu brocade was that the polychrome warps (and sometimes wefts) were either arranged in a predetermined stripe for each warp colour or were arranged in subtle colour gradations. Check or stripe patterns were therefore a determinant characteristic of Shu brocade. Symmetrical floral or animal motifs arranged in a

Figure 8: Detail of *qilin* from apron panel, 19th century
checked framework, or else scattered floral motifs on a striped background, were common. Shu brocades were often used for household textiles (e.g. quilt covers).

Yun brocade, a heavy-weight polychrome figured-silk brocade, was manufactured in the Nanjing area [Ji, 1984, pp. 106-107]. Its origin was during the Yuan dynasty when imperial dyeing and weaving bureaux were established to monitor the production of high-quality patterned textiles [Huang, 1987, p.10]. During the Ming and Qing dynasties, production continued in government-monitored mills in Nanjing [Editorial Board for Textiles, 1984, p.316]. Until the late Qing dynasty, when quantities of Yun brocade were exported, output was generally retained for use in the imperial court [Editorial Board for Textiles, 1984, p.316]. The principal patterning feature of Yun brocade was the use of large-scale stylised motifs in well-balanced compositions. Combinations of strong colours were often softened by gold or silver outlines.

Figure 9:
Embroidered apron, late 19th century
6.4 VELVETS.

The Qing dynasty is also noted for the production of velvets. The principal category was Zhang velvet, a cut-warp-pile silk fabric, which originated in the Zhongzhou area of Fujian province during the Yuan dynasty. During the Qing dynasty, velvet-producing manufacturers were located in both Fujian and Guangdong provinces as well as in Nanjing and Suzhou (both in Jiangsu province) [Chen, 1984, p.377]. Patterning often featured symbolic creatures such as dragons, phoenixes, butterflies and bats depicted in circular compositions. Black, purple, brown, blue and pale green were among the dominant colours. Zhang velvet was well known for its elegant patterning and resistance to abrasion [Editorial Board for Textiles, 1984, p.319]. The principal end-use during the Qing dynasty was as apparel fabrics.

![Figure 10: Detail of phoenix taken from a bed-curtain panel, 19th century](image_url)
A vast range of decorative motifs was used in the decoration of Qing dynasty textiles: humans, mythical animals, plants and fruits, natural phenomena, man-made objects, abstract line drawings, and various calligraphic signs. Three important sources for motifs and symbols were: Buddhism, Daoism and Confucianism. Decorative compositions were frequently regulated by the imperial court or simply restricted by tradition (a strong force throughout the Qing dynasty). Occasionally the design applied to a textile was purely decorative in nature. In other cases, subtle meanings were conveyed by the use of combinations of homophonic or auspicious motifs or compositions.

7.1 Buddhist, Daoist and Confucian Motifs.

Buddhist compositions included portraits of a Buddha figure, often executed in *ke-si*. Often the Buddhist eight precious objects (*ba ji xiang*) would be depicted together or singly and in association with other, non-Buddhist, motifs. The relevant eight Buddhist symbols are:

- The wheel, which symbolises the law. At times a bell may replace the wheel.
- The conch shell, which calls the faithful to prayer.
- The canopy, which symbolises protection and victory.
- The umbrella, which symbolises nobility.
- The endless knot or knot of destiny is symbolic of the path that leads to righteousness.
- The lotus symbolises purity.
- The pair of fish symbolise marriage and unity.
- The vase, which was reputed to contain the elixir of heaven, symbolises enduring peace.

[Zhong, 1989, p.38]

Daoist (sometimes spelled "Taoist") themes include the use of the so-called "eight Daoist immortals" or their associated emblems (*an ba xian*). These are as follows:

- Zhong Liquan, the patron of the military, with a fan or, occasionally, the peach of immortality.
Zhang Guolao, a recluse and patron of artists and calligraphers, with a bamboo drum.

Lu Dongbin, a scholar and patron of barbers, with sword and fly whisk.

Chao Guejiou, the patron of actors and others associated with the theatre, with castanets.

Li Tiaguai, the patron of the sick, with a gourd and iron crutch.

Hang Xiangzhi, the patron of musicians, with a flute.

Lan Chaihe, the patron of florists and gardeners, with a flower basket.

He Xiangu, the patron of housewives. [Zhong, 1989, pp. 38-39].

Motifs from Confucian or similar ethical origins included the five ethics (various pairs of birds, the father and son, the married couple, the brothers, and friends). The eight secular, or precious, objects (babao) are generally listed as follows:

- The pearl, a symbol associated with the granting of wishes.
- The lozenge, a symbol of victory.
- The qing or musical stone, a symbol of musical accomplishment.
- The coin, a symbol of wealth.
- The rhinoceros horn, a symbol of health.
- The mirror, a symbol of unbroken conjugal happiness.
- The book, a symbol of scholarly learning.
- The artemisia leaf, a symbol of good luck and the prevention of disease.

7.2 CALLIGRAPHIC AND HOMOPHONIC MOTIFS.

Both written and spoken Chinese are sources of motifs and decorative composition. Many characters of Chinese script have a pictographic origin and, as a result, can be readily adapted in stylised form to the decorative arts. Such motifs are often seen on Qing dynasty textiles. A further important feature is the inclusion of numerous homophones in the language. As a result, auspicious phrases or ideas can be associated with correspondingly homophonic objects. These proliferate in the Qing dynasty decorative arts, often in the form of single objects and occasionally as groups of several objects. Examples of homophonic objects are:
- The qing or musical stone, for celebration (and also as a symbol of musical accomplishment).
- The magpie, for happiness.
- The vase, for peace.
- The lotus, for continuity.
- The asmanthus flower, for riches.
- The bat, for happiness.

[Zhong, 1989, p. 40]

Examples of phrases, which combine homophones are:

- Jin yu mang tang ("numerous offspring in the family") is composed from a gold fish and crab-apple flowers.
- Ping shen san ji ("to be promoted by three ranks") is composed of a vase containing three ji (or halberds).
- Lian sheng guei zhi ("to have promising children") is composed of a lotus, a boy holding a spray of osmanthus blossoms and occasionally another boy playing a sheng (a reed-like musical instrument).

[Zhung, 1989, p.40]

7.3 AUSPICIOUS MOTIFS AND COMPOSITIONS.

A wide range of geometric patterning is evident on Qing dynasty textiles. Key patterns were in widespread use on both woven and embroidered pieces. Botanical motifs were also used. Certain flowers were favoured including the peony, the lotus, the chrysanthemum, the plum flower, and the crab-apple flower. Fruits included the foshou (or fingered citron), the pomegranate and the gourd. Pine or bamboo trees were also commonly depicted. The most common mythological animal motifs used were the dragon (or lung), the unicorn (or qilin) and the phoenix (or feng huang). All three are of ancient origin. Each is described briefly below.

The dragon (or lung) is China’s oldest mythological creature and was featured on ancient bronzes long before the invention of writing [Walters, 1995, p. 44]. The dragon was deemed to be charged with yang, the positive principle of the cosmos, and was selected as a symbol of the emperor. Depending on the ranking of the wearer, dragon motifs depicted on costumes would have five, four or three claws on each foot. Five-clawed motifs were reserved for the emperor and high-ranking officials only. With the spread of Buddhism to China, symbolism associated with the motif was absorbed into the religion [Walters, 1995, p. 45].
The unicorn or qilin has been given various descriptions. The consensus appears to be: an animal with the body of a deer, the tail of an ox, the hooves of a horse, and with two horns (despite its name). It was deemed to be the harbinger of great events and tradition claims its presence at the birth of Confucius.

The Chinese phoenix, or feng huang, was the sacred bird of Chinese mythology and was generally depicted with similarity to an ornamental pheasant. It was deemed to be charged with yin, the negative principle of the cosmos, and was adopted as the symbol for the empress.

Other animal motifs include the lion, the deer, the bat, the crane, the shoudai bird (the paradise flycatcher), the pheasant, the wild goose, the mandarin duck, the kingfisher, the carp, the grasshopper, the mantis and the butterfly [Zhong 1989, p. 42].
8. IN CONCLUSION

This short monograph presents some of the evidence pertaining to textile manufacture in China during the most remote periods of Chinese history. Archaeological finds from the last few decades of the twentieth century have yielded evidence of a bewildering variety of textile-related activity during ancient times. Sophisticated brocade weaving, embroidery, stencil printing and weft knitting were among the techniques in use over two thousand years ago. Geometrically complex fabrics were produced from various bast fibres. Wool-processing techniques, including dyeing and fabric finishing, were probably more advanced than in any other world zone at the same date. The complexity of woven silks available to the Han dynasty suggests a weaving technology centuries ahead of any elsewhere. Practical knowledge of sericulture, and of further silk processing, created a monopoly position for China, an advantage which was exploited through the trade networks which constituted the "Silk Route".

By the time of the Qing dynasty, the techniques used to decorate silk textiles had changed little since the Han dynasty. Also there was a high degree of continuity in the range of decorative elements used in the patterning of textiles in successive dynasties, from the Han down to the Qing. The wide range of motifs and decorative compositions in use had been passed down through the centuries with a few additions (e.g. Buddhist iconography) and only small changes in their context of application (e.g. changes in costume styles). The origins of the techniques of production and the principal motifs used in the decoration of Chinese textiles can thus be traced to remote times.
REFERENCES

(All Chinese texts were translated by Dr. Hong Zhong. In cases where precise original authorship is unknown, the name of the relevant authority, commission, institution or board is given.)

